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Abstract

We evaluate the performance of the most common estimators of Latent Markov
(LM) models with covariates in the presence of direct effects of the covariates on
the indicators of the LM model. In LM modeling it is common practice not to
model such direct effects ignoring the consequences that might have on the overall
model fit and the parameters of interest. However, in general literature about latent
variable modeling it is well known that unmodeled direct effects can severely bias
the parameter estimates of the model at hand. We evaluate how the presence of di-
rect effects influences the bias and efficiency of the three most common estimators
of LM models, the one-step, two-step and three-step approaches. Furthermore we
propose amendments (that were thus far not used in the context of LM modeling)
to the two and three-step approaches that make it possible to account for direct ef-
fects and eliminate bias as a consequence. This is done by modeling the (possible)
direct effects in the first step of the stepwise estimation procedures. We evaluate
the proposed estimators through an extensive simulation study, and illustrate them
via a real data application. Our results show, first, that the augmented two-step
and three-step approaches are unbiased and efficient estimators of LM models with
direct effects. Second, ignoring the direct effects leads to biased estimates with all
existing estimators, the one-step approach being the most sensitive.
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Introduction

The current paper proposes to give an overview of the most used estimators of Latent Markov
(LM) models (one-step, two-step and three-step estimators) in the presence of direct effects (DE) of
covariates on the indicators of the LM model. The goal of the paper is mostly educational: to intro-
duce the most popular estimators, describe their performance, and give practical advice on which
estimators to use in the presence of DE’s. Furthermore, based on our real data example, we provide
also a detailed Latent GOLD syntax that serves as a step-by-step guide for applied researchers in-
terested in applying these approaches. Next to showing how the most used estimators perform in
the presence of DE, we also propose alternative implementations of the stepwise estimators that can
model DE, and that were so far not proposed in literature.

Latent Markov models are widely used in the social and behavioral sciences for modeling
change over time. In its basic form, the model includes the repeated measurement over time of
one or more variables of interest. Examples include estimating the change in brand choice behavior
over time (Poulsen, 1990) or modeling disease progression over time (Jackson et al., 2003).

These models assume the existence of a latent process, typically modeled as a first-order Markov
chain with finite state space, which affects the distribution of the response variables. A central
assumption behind this approach is that the response variables are conditionally independent given
this latent process. This is known as local independence, meaning that the latent process fully
explains the observable behavior of a subject.

An extension of the model includes (time constant and time varying) covariates that predict the
probability of belonging to certain latent states, or the transition probability between states over
time. There are three main approaches to estimate LM models with covariates: one-step, two-step
and three-step approaches.

Using the one-step approach (also known as full information maximum likelihood, FIML), the
complete model of interest is estimated simultaneously. Although algorithms for simultaneous ML
estimation exist (like the Baum-Welch type of EM algorithm), this approach is infeasible, hence
hardly ever used in practice, when the number of time points, indicators and/or covariates is large.
Furthermore, every time a small change is made to the model (for example adding a direct effect),
the full model of interest has to be re-estimated. Because of these difficulties, stepwise estimation
procedures, that break down the problem into smaller steps, have been suggested in literature.

One well known alternative is the three-step approach, whereby in step one the measurement
model is estimated using a latent class (LC) model on the pooled data, then respondents are assigned
to latent states (step 2), and in step three the assigned scores are related to covariates. A problem
with this approach is that the third step estimates are biased, due to ignoring the classification error
introduced in step two. A bias-adjustment method was developed by J. K. Vermunt (2010) for LC
models (ML adjustment method), extended to LC models with distal outcomes by Bakk et al. (2013)
(see also Zhu et al., 2017, for an extension to the LC model with distal outcome and multiple latent
variables). Later on, Di Mari, Oberski, & Vermunt (2016) implemented the ML adjustment method
to LM models, which obtains unbiased estimates as long as the main assumptions are met.

Alternatively a two-step estimator proposed by Bartolucci, Montanari, & Pandolfi (2014) can
be applied. Similarly to the three-step approach, in step one a LC model is estimated on the pooled
data. In step two a LM model with covariates is estimated, while keeping the measurement model
parameters fixed at the estimates obtained in step one. This approach is similar to the well known
two-stage least square estimator from the econometric literature (Murphy & Topel, 1985; Hardin,
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2002). Using this approach, the complex estimation specific to FIML is broken down to manageable
sized problems.

In the current paper we evaluate the bias and efficiency of the one-step, two-step and three-step
approaches in the presence of direct effects. While using all of these approaches it is a common as-
sumption that the covariates do not influence directly the indicators, the violation of this assumption
was not evaluated thus far in the context of LM modeling. It is well known that both the one-step
and three-step approaches are subject to severe bias when direct effects are present in latent class
(LC), latent trait (Asparouhov & Muthén, 2014), and regression mixture models (Kim et al., 2016;
Nylund-Gibson & Masyn, 2016). Notably, the amount of bias is increasing in the number of di-
rect effects. As such it is of utmost importance to understand the consequences of the presence of
unmodeled direct effects for LM models as well. A work which explores the available estimators
for LM modeling in the presence of direct effects is lacking, and the present paper fills this gap. In
addition, although it is not new in LM modeling the use of the two-step estimator (Bartolucci et al.,
2014; Montanari & Pandolfi, 2017), this needs deeper investigation under a broad set of possible
conditions, including the presence of unmodeled direct effects.

Furthermore, we propose alternative implementations of the stepwise approaches that model
the direct effects in step one. Our proposal is motivated by the findings in Bennink et al. (2015) for
multilevel LC models, and Asparouhov & Muthén (2014) for LC models. Both papers show that
including the direct effects in the first step leads to unbiased estimates of the parameters of interest
in the last step model of LC models. Using the two-step approach, in step one the direct effects
can be modeled, and the step two estimates conditioned on this adjusted step one model. Using this
implementation, the final model contains the estimated effect of the covariates on the latent states
and the transition probabilities, but also the direct effects, making it possible to interpret the direct
effects, which is of interest in certain implementations.

Using the three-step approach, we propose an implementation that accounts for possible direct
effects by modeling them as noise in an overparametrized step one model. Such an alternative makes
it unnecessary to model the correct direct effects exclusively, rather using an augmented model that
accounts for multiple possible direct effects. Then, the noise created by misspecifying the direct
effects in the first step is dealt with by adding an absorbing second latent variable.

This alternative three-step implementation is needed, because in the three-step approach, con-
trary to the one-step and the two-step approaches, using residual statistics to identify the correct
direct effects cannot be done. In the augmented three-step approach, although it is not possible to
interpret the direct effects in step three, it is possible to model them in a way that their presence
does not affect the estimates of the parameters of interest.

The paper proceeds as follows: first we introduce the LM model in its most general form,
discussing one-step, two-step and three-step ML estimation, including the proposed modifications
to the stepwise approaches. Next we evaluate, using a simulation study, the performance of the
various approaches and proceed to a real data example. In our conclusion we give a practical
guideline to applied researchers about which approach to use under different circumstances.

The latent Markov model with covariates

The LM model, in its baseline formulation, was first introduced by Wiggins (1973). Known
also under the name of hidden Markov model (MacDonald & Zucchini, 1997), or latent transition
model, was later on extended to include covariates in the initial state and transition probabilities
by J. K. Vermunt et al. (1999), and in the measurement model by Bartolucci & Farcomeni (2009).
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Extensive reviews on LM can be found in Bartolucci et al. (2012), and Zucchini et al. (2016). We
first present the LM model with covariates in the initial and transition probabilities, then consider
as well the case where covariates have also a direct effect on the indicators - therefore enter the
measurement model - and sketch maximum likelihood one-step estimation.

Let Y1t, . . . , YJt be J indicator variables measured for T +1 time occasions, with t = 0, . . . , T.
Let us indicate as Yt the full response pattern at time t, with realizations Yt, observed alongside
with K covariates Zt . In addition, we denote the full set of response configurations and available
covariates at the T + 1 measurement occasions respectively as Y and Z . The latent variable Xt has
a finite state space of size S and we let st be one of the S possible latent states for time t. A latent
Markov model formulates the probability of having a particular sequence of response configurations
at the T + 1 time occasions, given the time-specific covariates, as follows

P (Y = y|Z) =
∑S

s0=1
∑S

s1=1 · · ·
∑S

sT =1 P (X0 = s0|Z0)
∏T

t=1 P (Xt = st|Xt−1 = st−1,Zt)
∏T

t=0 P (Yt = yt|Xt = st),
(1)

The model defined in Equation 1 is depicted in Figure 1.

ZZZ0 ZZZ1 ZZZT

X0 X1 XT

YYY 0 YYY 1 YYY T

Figure 1. Latent Markov model with covariates: one-step model
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For the structural component we assume a first-order time-homogeneous Markov chain. Covari-
ates enter both in the initial state probability P (X0 = s0|Z0), and the latent transition probability
P (Xt = st|Xt−1 = st−1,Zt).

The measurement component, as for standard latent class models for dichotomous responses,
can be written as

P (Yt = yt|Xt = st) =
J∏

j=1
P (Yjt = yjt|Xt = st) (2)

due to the assumption of mutual independence of the response variables given class membership,
i.e. local independence. Although we assume time homogeneity, the measurement can be allowed
to differ across time, and/or it can include direct effects of the covariates on one or more items. In
our case it is natural to assume that, given the latent variable, Yjt has a Bernoulli distribution with
success probability πsj .

For each combination of item and time, 1 ≤ j ≤ J and 0 ≤ t ≤ T, the conditional response
probabilities can be parametrized as

log
(

πsj

1− πsj

)
= θjs, for 1 ≤ s ≤ S, (3)

or

log
(

πsj

1− πsj

)
= θjs + α′j Z, for 1 ≤ s ≤ S, (4)

if direct effects of the covariantes are also included.
We estimate intitial state probabilities and transition probabilities using logistic models with the

following parametrization

log P (X0 = s|Z0)
P (X0 = 1|Z0) = βs0 + β

′
s Z0, (5)

with 1 < s ≤ S, for the initial state probability, and

log P (Xt = s|Xt−1 = r,Zt)
P (Xt = 1|Xt−1 = r,Zt)

= γ0s + γ0rs + γ ′s Zt, (6)

with 1 < s ≤ S, and 1 < r ≤ S for the transitions probabilities. We take the first category as
reference - setting to zero the related parameters. For the transition model, this means that parame-
ters related to the elements in the first row and column of the transition matrix are set to zero. This
produces J × S︸ ︷︷ ︸

measurement model

+ (S − 1)× (K + 1)︸ ︷︷ ︸
initial state probabilities

+ (S − 1)× (1 + (S − 1) +K)︸ ︷︷ ︸
transition probabilities

free parameters to

be estimated.
The interpretation of category-specific effects is then in terms of difference from the first (refer-

ence) latent state.
Let {(Yit,Zit)}n = {(Y1t,Z1t), . . . , (Ynt,Znt)} be a sample of independent observations,

observed for t = 0, . . . , T time occasions. Parameter estimation is normally carried out in one step
by maximizing the log-likelihood function

L =
n∑

i=1
logP (Yi = yi|Zi). (7)



LM MODELING WITH DIRECT EFFECTS 6

Iterative procedures, like the EM algorithm (Dempster et al., 1977) can be used to maximize
Equation (7). However, when using the standard EM, the time and storage required for parameter
estimation of LM models increases exponentially with the number of time points (Vermunt, Lange-
heine, & Böckenholt, 1999). For this reason, the forward–backward algorithm (Baum et al., 1970;
Welch, 2003) is typically implemented: this is a special version of the standard EM in which the size
of the problem increases only linearly with the number of time occasions (MacDonald, & Zucchini,
1997). Yet, also estimation with forward–backward algorithm becomes infeasible when the number
of time points, the number of indicators and/or the number of covariates one wants to include in the
analysis are large (Di Mari et al., 2016).

Stepwise estimation of latent Markov models

Bias-adjusted three-step method

Below we present the bias-adjusted three-step method of LM modeling as introduced by Di Mari
et al.(2016). The first step model treats repeated measures from the same individual as independent.
The pooled observations are modeled using a LC model as shown in the leftmost side of Figure 2
and defined as follows:

P (Y = y) =
S∑

s=1
P (X = s)P (Y = y|X = s), (8)

where

P (Y = y|X = s) =
J∏

j=1
P (Yj = yj |X = s) (9)

under local independence of responses given the latent process.
P (X = s), the class proportions, and P (Yj = yj |X = s), the conditional response proba-

bilities, are parametrized with standard logistic regressions with only intercept terms, yielding to
J × S + S − 1 free parameters to be estimated. Estimation is done by maximizing the following
log-likelihood function

LSTEP1 =
n∑

i=1

T∑
t=0

logP (Yit = yit). (10)

In the second step, individuals are assigned to latent classes based on their posterior probabilities
as shown in the middle part of Figure 2. Posterior probabilities, or posterior class probabilities, are
obtained as

P (Xt = st|Yt = yt) = P (Xt = st)P (Yt = yt|Xt = st)
P (Yt = yt)

, (11)

by applying the Bayes rule. The most common classification rules, based on Equation (11), are
modal assignment, which yields a hard partitioning of the data, and proportional assignment, which
yields a soft (or crisp) partitioning. We will focus on modal assignment only1. Denoting the pre-
dicted class by Wt, which only depends on Yt, modal assignment estimates Wt allocating a weight

1In principle, both modal and proportional assignment rules can be used. Yet, proportional assignment may become
infeasible with larger number of time points, as nonzero weights are allocated to all possible latent state patterns of each
observation.
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wyts = P (Wt = st|Yt = yt) = 1 if P (Xt = st|Yt = yt) is the largest, and a zero weight
otherwise.

The amount of classification error can be evaluated as the probability of the estimated class
value given the true one, which, by aggregating over the sample patterns, can be obtained (Vermunt,
2010) as

P (Wt = rt|Xt = st) =
1

n(T +1)
∑n

i=1
∑T

t=0 P (Xt = st|Yt = yt)wits

P (Xt = st)
. (12)

In the third step (the rightmost part of Figure 2), class assignments are used to estimate the
structural component of the model in Equation (1), while correcting for the classification error
computed in step 2. Di Mari et al. (2016) showed that the ML correction of Vermunt (2010)
for three-step estimation of LC models can be adapted for three-step estimation of LM models.
That is, the relationship between covariates and the true state memberships Xt can be estimated by
defining a latent Markov model with the class assignments Wt as a single indicator, while treating
the classification error probabilities P (Wt|Xt) as known:

P (W|Z) =
∑

X0,...,Xt

P (X0|Z0)
T∏

t=1
P (Xt|Xt−1,Zt)

T∏
t=0

P (Wt|Xt), (13)

with (S − 1)× (K + 1) + (S − 1)× (1 + (S − 1) +K) free parameters to be estimated.
Hence, the estimation of the parameters of the structural component of (1) is done by maximiz-

ing the following log-likelihood function:

LSTEP3 =
∑n

i=1 log
∑

s0,...,sT
P (X0 = s0|Zi0)

∏T
t=1 P (Xt = st|Xt−1 = st−1,Zit)

∏T
t=0 P (Wit = rit|Xt = st).

(14)

X0 X1 XT

YYY 0 YYY 1 YYY T

Step one

YYY 0 YYY 1 YYY T

W0 W1 WT

Step two

ZZZ0 ZZZ1 ZZZT

X0 X1 XT

W0 W1 WT

Step three

fixed

fixed

fixed

Figure 2. The steps of the three-step LM model
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Two-step method with direct effects

An alternative estimator initially proposed by Bartolucci et al. (2014) is the two-step method.
The first step model is a standard LC model estimated on the pooled data as described in Subsection
“Bias-adjusted three-step method" and shown in the left hand side of Figure 3. Let us denote as θ1
the conditional response probabilities, defined in Equation (9), which are estimated in the first step
model. Bartolucci et al. (2015) showed that θ1 can be used to consistently estimate the measurement
model of Equation (2).

The second step consists in maximizing the following log-likelihood function

L(θ2|θ1 = θ̂1) =
n∑

i=1
logP (Yi = yi|Zi), (15)

where we denote the (S − 1)× (K + 1) + (S − 1)× (1 + (S − 1) +K) parameters of the initial
state probabilities and transition probabilities as θ2, and

P (Yi = yi|Zi) =
S∑

s0=1

S∑
s1=1
· · ·

S∑
sT =1

P (X0 = s0|Z0)
T∏

t=1
P (Xt = st|Xt−1 = st−1,Zit)︸ ︷︷ ︸

free

T∏
t=0

P (Yit = yit|Xt = st)︸ ︷︷ ︸
fixed

.

(16)
The log-likelihood of Equation (15) is maximized with respect to θ2, whereby the J×S parameters
of the measurement model are fixed at their first step values θ̂1 (see the right hand side of Figure 3),
and all direct effects of the covariates on the indicators are set to zero.

While Bartolucci et al. (2014) proposed a version of the model without the DEs, we hereby
propose a natural extension of their approach that enables modeling DEs. To test whether fitting
a model without any DEs causes any misfit, a local fit measure like the Longitudinal BiVariate
Residuals (L-BVR) statistic (J. K. Vermunt & Magidson, 2016) can be used. If any direct effect of
the covariates is picked up by the L-BVR, the indicators showing residual associations with Z are
freed and the first step model is re-estimated by modeling the direct effect as follows:

P (Y = y) =
S∑

s=1
P (X = s)P (Y = y|X = s,Z). (17)

The conditional response probabilities of indicators showing no residual association are simply
modeled by using P (Y = y|X = s) instead of P (Y = y|X = s,Z). The estimated parameters
are then used as fixed-value parameters in the second step, where the log-likelihood function of
Equation (15) is maximized again with respect to θ2. The estimation is broken down into peaces,
making complex LM modeling with covariates manageable, whereas one-step estimation would be
cumbersome, especially with many time points, indicators and/or covariates.



LM MODELING WITH DIRECT EFFECTS 9

X0 X1 XT

YYY 0 YYY 1 YYY T

Step one

ZZZ0 ZZZ1 ZZZT

X0 X1 XT

YYY 0 YYY 1 YYY T

Step two

fix
ed

fix
ed

fix
ed

Figure 3. The steps of the two-step LM model

The augmented bias-adjusted three-step approach

Unbiased three-step modeling in the presence of direct effects can be done if all residual as-
sociations are modeled correctly. Because the use of residual statistics to identify direct effects is
not possible using the three-step approach, we propose an alternative somewhat overparametrized
approach that could potentially obtain similar results to correctly modeling the (known) direct ef-
fects. Our approach is motivated by the work of Asparouhov & Muthén (2014), who proposed an
extension to the three-step LC model that allows modeling direct effects by allowing for them in
step one.

Let us introduce an additional latent variable Ψ, with state space of size P and we let p be one
of the possible states. In addition, let us define D as the set of the J∗, with J∗ ≤ J, indicators for
which we might presume direct effects of the covariates. Instead of the model in Equation (8), we
consider modeling the pooled sample according to the following augmented first step model

P (Y = y) =
S∑

s=1
P (X = s)P (Y = y|X = s,Z,Ψ = p), (18)

where

P (Y = y|X = s,Z,Ψ = p) =
∏

j /∈D P (Yj = yj |X = s)×
∏

j∈D P (Yj = yj |X = s,Z,Ψ = p).
(19)

The parametrization we consider for the response probabilities is as follows

log
(

πsj

1− πsj

)
= θjs + 1{j ∈ D}(ψjp + α′j Z), (20)

for 1 ≤ s ≤ S and 1 ≤ p ≤ P , with J × S + J∗ × P + J∗ × K free parameters. In most
instances researchers have an initial knowledge of which indicators are prone to have bias. In the
augmented first step model of Equation (18), the covariates assumed to have a direct effect are
loaded on the indicators (see Figure 4) based on a - even rough - knowledge on where the direct
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effects can be located. Intuitively, the additional latent variable Ψ is included in order to model the
noise (D. Oberski, 2016) that can be caused by misspecifying the direct effects. We choose to model
such noise non-parametrically by using a discrete latent variable, similarly to what is done in the
LC latent factor models of J. Vermunt & Magidson (2004).

Once the step one model is estimated, posterior probabilities are computed using the formula in
Equation (11), and modal class assignments are then used - correcting for the classification error -
to estimate the structural component of the model in Equation (1).

X0 X1 XT

YYY 0 YYY 1 YYY T

ZZZ0 ZZZ1 ZZZTΨ

Augmented step one

YYY 0 YYY 1 YYY T

W0 W1 WT

Step two

ZZZ0 ZZZ1 ZZZT

X0 X1 XT

W0 W1 WT

Step three

fixed

fixed

fixed

Figure 4. The steps of the augmented three-step LM model
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Simulation study

Design

The objective of this simulation study is to evaluate the quality of the different modeling ap-
proaches for latent Markov models with covariates in the presence of one or more direct effects
(DE) of the covariates on the indicators. Next to evaluating the commonly used approaches (one-
step, two-step and three-step), we compare their performance to the hereby proposed modified step-
wise estimators, that model the direct effects. Our expectation is that the approaches that model
the direct effects (either explicitly or by modeling them as noise) will do better then the approaches
that ignore these effects, especially when they are strong in magnitude, and affect many indicators.
We restrict ourselves to the situation where we model known direct effects, ignoring the problem
of correctly selecting them. Indeed, our main interest is to investigate the percentage bias caused
by the presence of direct effects, and whether this bias can be corrected if such direct effects are
correctly modeled.

Each method will be assessed in terms of parameter estimates, percentage bias, relative effi-
ciency (averaged standard error over averaged standard deviation), coverage rates and relative loss
of precision in the estimate with respect to the correctly specified one-step (FIMLcorr) model. The
methods included in the comparison are 1) one-step without DE (FIMLuncor), 2) correctly speci-
fied one-step (FIMLcorr), 3) two-step without DE (2STEP uncor) and 4) two-step with DE (2STEP
corr), 5) bias-adjusted three-step with unmodeled DE (3STEP), 6) augmented bias-adjusted three-
step (3STEPaug), where the second LV - discrete, with 6 latent states2 - and the covariate effects
are loaded only on the three items which might have residual association with the covariates.

Class separation - strongly related to classification error - and sample size are known to affect
stepwise modeling. In this simulation study, we manipulate separation only through the strength
of the relationship between items and latent classes - conditional response probabilities - although
other options are possible - e.g. number of items, the number of item categories, and the class sizes.

We generate the data from a three-class latent Markov model with six dichotomous responses
(low/high) and two numeric time-fixed covariates, where one (Z1) is included in both the initial state
and the transition model, while the other (Z2) is only included in the transition model. Z1 is binary
with scores -0.5, 0.5, while Z2 has five categories, scored -2, -1, 0, 1, 2, and treated as continuous.
Covariates Z1 and Z2 enter the structural models through the multinomial logit parametrization
shown in Equations (5) and (6), with the first class as reference category. Parameter values are
chosen such that initial state probabilities are about the same, and the probability of switching is
about 0.2 - a typical setup in LM modeling, where stability tends to be larger than change. The
intercepts of the initial state model were both set to 0, while β2Z1 = β3Z1 = −0.5. In the transition
model, intercept terms are set to γ02 = γ03 = −2, γ022 = γ033 = 4 and γ023 = γ032 = 2. Covariate
parameters in the logit model for the transition probabilities were set to -1 for Z1 in both classes,
and to 0.25 for Z2 in both classes.

Z1 has also a direct effect on the indicators. We consider two direct effect conditions: one,
where the effect is stronger in magnitude (0.5), and another one where the effect is milder (0.25).
For each of the two magnitude conditions, we consider three sub-scenarios, in which Z1 is loaded
on one, two and three indicators respectively. For instance, for the strong direct effect condition,
the parametrization is as in Equation (4), with (sub-scenario 1) a DE on the first item α1 = 0.5;

2A larger number of states was also tried, but in all cases we observed that a number approximately twice as large as
the number of states in the latent variable of interest was enough to approximate the distribution of the noise.
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(sub-scenario 2) DE’s on the first and the last items, with α1 = α6 = 0.5; (sub-scenario 3) DE’s on
the first, the third and the last items, with α1 = α6 = 0.5, and α3 = −0.5. All other α’s are set to
zero. The scenarios, for a given magnitude (0.25 or 0.5) are displayed in Table 1.

Classes’ profiles are as follows: Class 1 is likely to give a high response on items 4 and 6, Class
2 on the first three items, and Class 3 on the first two and the last two items (Table 1). The response
probabilities for the most likely responses were set to 0.8 and 0.9, corresponding to moderate -
entropy-based R2 of about 0.7 - and high class separation - entropy-based R2 of about 0.9 - in the
first step model. The sample sizes used were 100, 500 and 1,000, and each sample unit is observed
for 5 measurement occasions.

For all 36 simulation conditions, obtained by combining the specified class separation levels,
sample sizes, and the 3 × 2 direct effect scenarios, we considered 500 replications and estimated
the model using all six methods. Data generation and parameter estimation were carried out using
Latent GOLD version 5.0 (J. K. Vermunt & Magidson, 2013), and results were analyzed in R.
Results are presented in Subsection “Results”.

Table 1
Item-class probabilities in the simulation, with associated direct effects and sign in parentheses.

Class 1 Class 2 Class 3
Item 1 D.E. 2 D.E. 3 D.E.
1 low high high X(+) X(+) X(+)
2 low high high × × ×
3 low high low × × X(-)
4 high low low × × ×
5 low low high × × ×
6 high low high × X(+) X(+)

Results

Tables 2 and 3 present percentage bias, average relative efficiency (SE/SD), coverage of 95%
CI’s (CVG) and relative loss of parameter estimates with respect to FIML corr for all six methods,
averaged over covariate effects, sample size and separation conditions for the three DE scenarios,
respectively for DE’s magnitude of 0.25 and 0.50. As can be seen, the bias-adjusted three-step
(3STEP) does systematically better than the one-step (FIML uncor) approach, and similarly to the
two-step (2STEP uncor) with unmodeled DE approach in terms of bias. However all uncorrected
estimators have a percentage bias up to as high as 6% in the conditions with two and three direct
effects, in the strong magnitude case - 4 % in the mild magnitude case. At the same time the
two-step approach with modeled DE (2STEP corr) shows the same performance as the correctly
specified one-step approach (FIML corr) in all DE scenarios, having a % bias of 2 / 2.5 percent in
all conditions. The augmented three-step (3STEPaug) represents a good alternative - in terms of
bias, SE/SD, coverage and loss of accuracy with respect to FIML corr - to the two-step approach
with modeled DE, with difference between the two approaches vanishing as the number of DE’s
increases. With all estimators, the SE/SD is close enough to 1, showing that the SE estimators
approximate the sampling variance well. Although, in some conditions with DE’s magnitude of
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0.25, there is a slight underestimation of the standard errors (SE/SD of about 0.98), the coverage is
close to the 95% for all estimators.

Table 2
Simulation Results - Covariate percentage bias (%Bias), SE/SD, coverage rates (CVG), and relative
loss - RelLoss - of parameter estimates with respect to the correctly specified model (FIMLcorr),
averaged over all covariate effects and simulation conditions. Magnitude of direct effect = mild
(0.25)

%Bias SE/SD CVG RelLoss
1 direct effect

FIMLcorr 0.019 0.978 0.945 -
FIMLuncor 0.025 0.978 0.946 1.002
2STEP uncor 0.022 0.980 0.946 0.997
2STEPcorr 0.022 0.990 0.948 1.001
3STEP 0.022 0.979 0.946 1.000
3STEPaug 0.028 0.982 0.946 0.984

2 direct effects

FIMLcorr 0.023 0.981 0.948 -
FIMLuncor 0.044 0.981 0.946 1.021
2STEP uncor 0.040 0.983 0.946 1.016
2STEPcorr 0.019 0.984 0.948 0.994
3STEP 0.042 0.988 0.948 1.018
3STEPaug 0.024 0.987 0.949 0.992

3 direct effects

FIMLcorr 0.022 0.996 0.953 -
FIMLuncor 0.039 0.996 0.952 1.020
2STEP uncor 0.035 0.998 0.950 1.014
2STEPcorr 0.019 0.999 0.952 0.993
3STEP 0.036 0.996 0.952 1.016
3STEPaug 0.027 0.997 0.951 0.993

Next we zoom in on the results separately for each combination of sample size, separation and
number of direct effects, for both magnitude levels. We report the % bias, SE/SD and coverage for
one of the parameter estimates measuring the covariate effect on the initial state (β2Z1 = −0.50).
We do so because the amount of bias we observe in the covariate effects on the initial states is larger
than on the transition parameters, so the least optimistic results are reported.

Tables 4 and 7 - magnitudes of 0.25 and 0.50 respectively - show that in the one direct effect
condition the approaches that ignore the direct effects are doing well, having small percentage bias
in all situations. These results are in line with the findings of Asparouhov & Muthén (2014), who
also found that in the one direct effect condition ignoring the DE does not cause large bias, contrary
to the conditions with more DEs. Similarly to the results reported in Tables 2 and 3, the coverage
and SE/SD shows values close to nominal levels in all situations.
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Table 3
Simulation Results - Covariate percentage bias (%Bias), SE/SD, coverage rates (CVG), and relative
loss - RelLoss - of parameter estimates with respect to the correctly specified model (FIMLcorr),
averaged over all covariate effects and simulation conditions. Magnitude of direct effect = strong
(0.50)

%Bias SE/SD CVG RelLoss
1 direct effect

FIMLcorr 0.025 0.998 0.953 -
FIMLuncor 0.036 0.997 0.952 1.004
2STEP uncor 0.033 1.000 0.952 0.998
2STEPcorr 0.019 0.991 0.950 0.996
3STEP 0.035 1.005 0.955 0.999
3STEPaug 0.034 0.988 0.948 0.978

2 direct effects

FIMLcorr 0.021 0.998 0.953 -
FIMLuncor 0.057 0.997 0.949 1.039
2STEP uncor 0.051 0.999 0.948 1.037
2STEPcorr 0.016 1.001 0.953 0.993
3STEP 0.053 1.004 0.950 1.035
3STEPaug 0.025 1.005 0.951 1.001

3 direct effects

FIMLcorr 0.026 0.994 0.950 -
FIMLuncor 0.060 0.992 0.946 1.041
2STEP uncor 0.054 0.994 0.947 1.037
2STEPcorr 0.021 0.996 0.950 0.993
3STEP 0.057 0.994 0.949 1.039
3STEPaug 0.032 0.997 0.951 1.009

Some interesting differences stand out in the two and three direct effect conditions, for both
magnitude levels. For the stronger magnitude, we observe (Tables 8 and 9) the following patterns:
the uncorrected approaches have a percentage bias up to 17.5% for the FIML approach and 14.5%
for the stepwise approaches in the smallest sample size and moderate separation condition for the
two direct effect condition, and up to 24% for FIML, and 22% for the stepwise estimators in the
three direct effect condition. Overall, among the approaches that do not model the direct effects, the
FIMLuncorr has the most bias, followed by the 2stepuncor, with the most robust estimator being the
3STEP. With modeling the direct effects, all estimators have a small amount of bias, and there is no
clear ordering of their performance with regard to bias. Furthermore, in all conditions, the SE/SD
and coverage rate are close to the nominal level.

For the milder magnitude scenarios, with two and three direct effects (Tables 5 and 6), values
for percentage bias are relatively smaller than for stronger magnitude, although we observe similar
patterns. Interestingly, all estimators, in some conditions of small sample size and/or moderate class
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Table 4
Simulation Results - Covariate percentage bias (%Bias), SE/SD, coverage rates (CVG) - of
β2Z1 =(-0.50) separatly for all combinations of sample size and separation for the one direct effect
condition, magnitude 0.25.

Moderate separation
n=100 n=500 n=1000

%Bias SE/SD CVG %Bias SE/SD CVG %Bias SE/SD CVG
FIMLcorr 0.008 0.970 0.948 0.022 0.981 0.938 0.011 0.973 0.948
FIMLuncorr 0.029 0.967 0.948 0.010 0.983 0.942 0.021 0.974 0.950
2STEPuncor 0.042 0.978 0.944 0.014 0.985 0.942 0.023 0.976 0.948
2STEPcorr 0.037 0.971 0.954 0.020 1.015 0.948 0.012 0.987 0.950
3STEP 0.007 0.993 0.958 0.003 0.976 0.944 0.025 0.982 0.950
3STEPaug 0.023 1.006 0.958 0.043 0.969 0.940 0.081 0.985 0.942

Large separation
n=100 n=500 n=1000

%Bias SE/SD CVG %Bias SE/SD CVG %Bias SE/SD CVG
FIMLcorr 0.053 0.961 0.940 0.025 1.060 0.964 0.003 0.963 0.936
FIMLuncorr 0.070 0.961 0.936 0.042 1.060 0.964 0.020 0.962 0.942
2STEPuncor 0.076 0.971 0.946 0.043 1.064 0.964 0.020 0.963 0.942
2STEPcorr 0.094 1.032 0.966 0.019 0.989 0.956 0.013 1.017 0.950
3STEP 0.065 0.966 0.944 0.042 1.068 0.968 0.016 0.966 0.938
3STEPaug 0.065 0.966 0.940 0.052 1.067 0.960 0.032 0.962 0.934

separation, show some degree of underestimation of the SE’s - the smallest SE/SD ratio reported
being of about 0.93 in the 1000 observations and moderate separation condition. It seems like, in the
milder magnitude condition, if more than one direct effect is present, this tends to produce larger
variability in the estimates of the parameters of interest. Nonetheless, the underestimation in the
SE’s is negligible as coverage rates are of ≈ 0.95 in all cases.
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Table 5
Simulation Results - Covariate percentage bias (%Bias), SE/SD, coverage rates (CVG) - of β2(-
0.50) separatly for all combinations of sample size and separation for the two direct effect condition,
magnitude 0.25.

Moderate separation
n=100 n=500 n=1000

%Bias SE/SD CVG %Bias SE/SD CVG %Bias SE/SD CVG
FIMLcorr 0.138 1.026 0.960 0.004 0.963 0.936 0.018 0.933 0.940
FIMLuncorr 0.183 1.022 0.958 0.050 0.966 0.944 0.063 0.938 0.936
2STEPuncor 0.172 1.037 0.964 0.046 0.969 0.944 0.061 0.939 0.938
2STEPcorr 0.114 1.048 0.968 0.011 0.969 0.936 0.013 0.937 0.942
3STEP 0.186 1.048 0.956 0.039 0.988 0.940 0.060 0.938 0.942
3STEPaug 0.122 1.061 0.966 0.023 0.985 0.942 0.028 0.940 0.942

Large separation
n=100 n=500 n=1000

%Bias SE/SD CVG %Bias SE/SD CVG %Bias SE/SD CVG
FIMLcorr 0.001 0.952 0.942 0.019 0.980 0.938 0.015 1.048 0.962
FIMLuncorr 0.022 0.951 0.948 0.039 0.982 0.942 0.036 1.051 0.956
2STEPuncor 0.019 0.962 0.946 0.038 0.984 0.940 0.035 1.053 0.956
2STEPcorr 0.008 0.965 0.946 0.017 0.982 0.940 0.013 1.050 0.964
3STEP 0.024 0.963 0.946 0.038 0.976 0.940 0.033 1.058 0.966
3STEPaug 0.026 0.965 0.952 0.047 0.975 0.936 0.033 1.065 0.968

Table 6
Simulation Results - Covariate percentage bias (%Bias), SE/SD, coverage rates (CVG) - of β2(-
0.50) separatly for all combinations of sample size and separation for the three direct effect condi-
tion, magnitude 0.25.

Moderate separation
n=100 n=500 n=1000

%Bias SE/SD CVG %Bias SE/SD CVG %Bias SE/SD CVG
FIMLcorr 0.003 1.046 0.964 0.007 1.040 0.962 0.014 1.040 0.962
FIMLuncorr 0.095 1.043 0.960 0.087 1.043 0.960 0.069 1.040 0.962
2STEPuncor 0.077 1.057 0.970 0.083 1.046 0.956 0.066 1.043 0.962
2STEPcorr 0.025 1.066 0.966 0.002 1.043 0.964 0.018 1.045 0.964
3STEP 0.056 1.050 0.968 0.087 1.033 0.944 0.062 1.040 0.958
3STEPaug 0.036 1.049 0.962 0.064 1.030 0.950 0.034 1.015 0.948

Large separation
n=100 n=500 n=1000

%Bias SE/SD CVG %Bias SE/SD CVG %Bias SE/SD CVG
FIMLcorr 0.103 0.989 0.958 0.005 0.999 0.950 0.014 0.981 0.958
FIMLuncorr 0.143 0.988 0.958 0.031 0.994 0.938 0.026 0.980 0.952
2STEPuncor 0.133 0.998 0.958 0.030 0.995 0.938 0.025 0.982 0.954
2STEPcorr 0.090 1.001 0.962 0.008 1.001 0.952 0.015 0.984 0.958
3STEP 0.127 1.008 0.962 0.030 0.982 0.946 0.020 0.994 0.946
3STEPaug 0.113 1.009 0.956 0.026 0.982 0.950 0.012 0.986 0.950



LM MODELING WITH DIRECT EFFECTS 17

Table 7
Simulation Results - Covariate percentage bias (%Bias), SE/SD, coverage rates (CVG) - of
β2Z1 =(-0.50) separatly for all combinations of sample size and separation for the one direct effect
condition, magnitude 0.50.

Moderate separation
n=100 n=500 n=1000

%Bias SE/SD CVG %Bias SE/SD CVG %Bias SE/SD CVG
FIMLcorr 0.054 0.966 0.960 0.017 1.019 0.958 0.004 1.063 0.964
FIMLuncorr 0.008 0.964 0.960 0.079 1.016 0.954 0.057 1.065 0.962
2STEPuncor 0.027 0.975 0.958 0.083 1.022 0.954 0.059 1.067 0.962
2STEPcorr 0.085 0.969 0.948 0.037 1.089 0.978 0.017 0.982 0.942
3STEP 0.052 0.986 0.966 0.079 1.006 0.958 0.064 1.089 0.970
3STEPaug 0.124 1.016 0.962 0.099 0.995 0.954 0.122 0.985 0.926

Large separation
n=100 n=500 n=1000

%Bias SE/SD CVG %Bias SE/SD CVG %Bias SE/SD CVG
FIMLcorr 0.030 1.035 0.974 0.029 0.973 0.942 0.020 1.044 0.950
FIMLuncorr 0.001 1.035 0.972 0.003 0.974 0.942 0.052 1.043 0.952
2STEPuncor 0.009 1.046 0.976 0.005 0.974 0.942 0.053 1.044 0.950
2STEPcorr 0.026 1.061 0.974 0.006 0.998 0.952 0.003 1.024 0.960
3STEP 0.009 1.049 0.978 0.002 0.978 0.942 0.050 1.038 0.950
3STEPaug 0.018 1.036 0.956 0.052 0.969 0.932 0.027 0.988 0.940

Table 8
Simulation Results - Covariate percentage bias (%Bias), SE/SD, coverage rates (CVG) - of β2(-
0.50) separatly for all combinations of sample size and separation for the two direct effect condition,
magnitude 0.50.

Moderate separation
n=100 n=500 n=1000

%Bias SE/SD CVG %Bias SE/SD CVG %Bias SE/SD CVG
FIMLcorr 0.070 0.928 0.944 0.008 1.019 0.962 0.019 1.013 0.956
FIMLuncorr 0.175 0.934 0.942 0.091 1.013 0.960 0.081 1.015 0.950
2STEPuncor 0.145 0.956 0.950 0.084 1.014 0.958 0.075 1.012 0.946
2STEPcorr 0.032 0.953 0.950 0.016 1.021 0.964 0.024 1.011 0.956
3STEP 0.143 0.974 0.952 0.087 1.014 0.958 0.070 0.984 0.942
3STEPaug 0.091 0.991 0.950 0.068 1.022 0.958 0.031 0.965 0.942

Large separation
n=100 n=500 n=1000

%Bias SE/SD CVG %Bias SE/SD CVG %Bias SE/SD CVG
FIMLcorr 0.032 0.970 0.954 0.033 1.033 0.954 0.027 1.036 0.950
FIMLuncorr 0.013 0.972 0.954 0.076 1.031 0.944 0.071 1.040 0.950
2STEPuncor 0.005 0.989 0.960 0.075 1.032 0.944 0.069 1.042 0.952
2STEPcorr 0.043 0.987 0.960 0.032 1.035 0.956 0.025 1.039 0.95
3STEP 0.004 1.003 0.964 0.073 1.034 0.938 0.069 1.043 0.946
3STEPaug 0.012 0.999 0.962 0.076 1.025 0.930 0.068 1.047 0.950
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Table 9
Simulation Results - Covariate percentage bias (%Bias), SE/SD, coverage rates (CVG) - of β2(-
0.50) separatly for all combinations of sample size and separation for the three direct effect condi-
tion, magnitude 0.50.

Moderate separation
n=100 n=500 n=1000

%Bias SE/SD CVG %Bias SE/SD CVG %Bias SE/SD CVG
FIMLcorr 0.054 1.029 0.946 0.032 1.021 0.954 0.025 1.043 0.948
FIMLuncorr 0.242 1.023 0.952 0.142 1.021 0.948 0.147 1.028 0.930
2STEPuncor 0.225 1.037 0.956 0.136 1.028 0.946 0.140 1.030 0.928
2STEPcorr 0.029 1.044 0.960 0.037 1.029 0.954 0.029 1.043 0.950
3STEP 0.214 1.038 0.964 0.140 1.047 0.954 0.148 1.013 0.930
3STEPaug 0.025 1.074 0.968 0.095 1.042 0.956 0.096 0.998 0.946

Large separation
n=100 n=500 n=1000

%Bias SE/SD CVG %Bias SE/SD CVG %Bias SE/SD CVG
FIMLcorr 0.026 0.981 0.960 0.012 0.946 0.936 0.002 1.016 0.964
FIMLuncorr 0.054 0.981 0.960 0.068 0.945 0.936 0.083 1.017 0.946
2STEPuncor 0.047 0.995 0.964 0.066 0.949 0.938 0.081 1.017 0.946
2STEPcorr 0.033 0.995 0.958 0.014 0.951 0.938 0.001 1.017 0.964
3STEP 0.042 1.011 0.962 0.062 0.957 0.944 0.076 1.020 0.946
3STEPaug 0.018 1.008 0.952 0.059 0.963 0.946 0.067 1.029 0.948
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A latent Markov model of tolerance types

Our choice of real data example is motivated by an example used by McCutcheon (McCutcheon,
1985) who showed how age and education groups differ with regard to their tolerance toward mi-
nority groups on data from the 1976 and 1977 General Social Survey (GSS) using a naive three-step
approach.

We used data from the panel version of the same GSS survey including measurements from
three years: 2010, 2012 and 2014, with a sample size of 2044, 1551 and 1304 respectively. The
data is openly available3. We selected six items that measure whether the respondents would allow
members of different out-groups to speak in a public space. The items are formulated as follows:
“Suppose this ... wanted to make a speech in your community. Should he be allowed to speak?" with
response options “(Yes/No)". The six items refer to: communists, atheists, militarists, homosexuals,
racists and Muslims. These items are used to measure an aspect of tolerance toward out-groups. It
is interesting to note that, in the 1976 /77 version of the questionnaire, the item measuring tolerance
toward Muslims was not yet included.

The covariates were re-coded following the approach of McCutcheon. Education was coded
into three categories: less than twelve degrees (1), completed highschool (2) and higher educated
(3). Cohort was coded into four categories: old (62 years and older, group 4), middle age (43-61
years old, group 3), young adults (25-42 years old, group 2) and young (18-24 years old, group 1).

We applied all six approaches to analyze the data. The results are discussed below.
Using both stepwise approaches in step one, following the recommendations of Di Mari et

al. (2016), we run a latent class model on the pooled data from the three years on the six items
representing the measurement model. Using this approach we assume a time invariant measurement
model - an approach commonly used in stepwise modeling, known to be robust. In Table 10 the
class sizes and class specific response probabilities of the best fitting three class model are presented
(AIC=-4150.90, BIC= -24771.78, χ2= 4192.30).

3https://www.icpsr.umich.edu/icpsrweb/ICPSR/series/28/studies/7398?archive=
ICPSR&sort

Table 10
Class sizes and conditional probabilities to give all-tolerant answers given the latent class.

“Intolerant” “Tolerant” “Middle”
Class size 0.19 0.51 0.30

Allow to speak...
Atheists 0.17 0.99 0.84
Communists 0.06 0.99 0.56
Militarists 0.16 0.97 0.64
Racists 0.13 0.94 0.44
Homosexuals 0.52 0.99 0.92
Muslims 0.02 0.86 0.07

https://www.icpsr.umich.edu/icpsrweb/ICPSR/series/28/studies/7398?archive=ICPSR&sort
https://www.icpsr.umich.edu/icpsrweb/ICPSR/series/28/studies/7398?archive=ICPSR&sort
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The first class, labeled ‘Intolerant’, has a low probability to give a positive answer on all items,
while the second class (which is the largest class) has a high probability to give a positive answer
on all items. The last class, labeled ‘Middle’, has a low probability to allow to speak for Muslims
and racists, while being more tolerant toward the other groups.

Using the three-step approach, after establishing the step one model, posterior classifications
are obtained in step two, and in step three the Markov model is built using the posterior classifi-
cations while correcting for the classification error. We used two implementations: the three-step
approaches without correcting for possible direct effects, and the augmented three-step approach.
As for the latter option, we decided to model possible direct effects by regressing the predictors
and the second latent variable (with 6 classes) on 3 items that can have direct effects in the first
step. Using this more complex step one model the posterior classifications were obtained in step
two and used in the step three analysis. The Latent GOLD syntax for the more complex augmented
three-step approach is available in the appendix together with the syntax of the two-step approach
modeling the direct effect.

Using the two-step approach, after establishing the LC model, in step two we estimate the tran-
sition probabilities of the Markov model, and the effect of the covariates on the initial states and on
the transition probabilities. After estimating this model we check for residual dependencies between
the covariates and the six indicator variables using the L-BVR statistic (J. K. Vermunt & Magidson,
2016). Two high residuals are identified between ’homosexuals’ and cohort (L-BVR=25.50) and
between ’racists’ and education (L-BVR=14.10). The presence of these residuals shows that, after
controlling for the latent classification, there is still a strong association left between the covariates
and these specific items that should be accounted for. In order to account for these direct effects, we
refit the step one model including the direct effects, followed by the corrected second step.

Using the one-step approach a similar strategy is used as with the two-step approach. After fit-
ting the FIML model ignoring all possible direct effects we checked the residual statistics. Using the
L-BVR the same direct effects were identified as with using the two-step approach, namely between
’homosexuals’ and cohort (L-BVR=25.50) and between ’racists’ and education (L-BVR=14.10).
After identifying the direct effects the model was refitted by modeling these effects explicitly.

It should be mentioned that we show the use of residual statistics mainly for illustrative purposes.
We recommend researchers not to use these statistics blindly, but in conjunction with theory.

In Table 11 we report the model fit statistics for the one-step and two-step approaches with
and without modeling the direct effects. Using both approaches we can see a significant decrease
in the L2 value, which is also reflected in a decrease in the AIC, but not consistently in the BIC
that controls for model complexity. Given the significant change in the L2, we proceed with the
more complex model that includes the direct effects. In three-step modeling, such a model selection
strategy cannot be used, as the step-one and step-three models are not nested.

The estimated transition probabilities from the step one model of remaining in the same class
are .70 for class one and three (intolerant and middle), and .90 for class two (tolerant class). We
found that 25% of the respondents moved from class one (intolerant) to the moderately tolerant class
(class three). Furthermore, the second largest switch is the transition over time from the middle to
the tolerant class (18% of the respondents).

In Table 12 we report the covariate effects on the initial states and transition probabilities using
the different approaches. More educated people have a higher probability to be in the middle and the
tolerant group than the intolerant in the initial state. Education has a similar positive effect also on
the transition probabilities. The effect of cohort is similar. Younger people have a higher probability
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Table 11
Model fit statistics with the one-step and two-step approach

AIC BIC L2 df difference L2 dif p
1-step 3660.57 -7640.98 7680.57
1-step direct 3597.64 -7692.66 7613.64 2 66.93 <.001
2-step 3692.32 -7710.44 7748.32
2-step direct 3646.46 -7711.32 7685.46 2 62.76 <.001

to be in the tolerant and middle group as compared to the intolerant group at the initial state. Cohort
has a significant effect on the transition probabilities with both approaches, namely younger people
have a higher probability to be in the tolerant and middle classes as compared to intolerant over
time. Furthermore, after controlling for class, there is a direct effect of cohort on education, namely
older people are more tolerant toward homosexuals then predicted only by the restrictive model.
Using all the approaches, the same overall conclusions are reached with regard to the direction of
the effects.

Conclusion

In the current paper we addressed an issue which is genuinely overlooked in latent Markov
modeling: the consequences of ignoring direct effects between indicators of the latent concept and
covariates. While in literature on latent class analysis and regression mixtures it is well known that
direct effects can bias the parameters of interest (Kim et al., 2016; Asparouhov & Muthén, 2014),
there is no literature on this issue in latent Markov modeling. The reason can be that LM models are
very complex, and estimating these models ignoring the direct effects is already problematic. We
compared the performance of the three estimators used in LM modeling: the one-step approach (also
known as full information ML), and the stepwise estimators, the two- and three-step approaches.
Furthermore we proposed two improved stepwise approaches that can take into account the direct
effects while keeping the main benefit of stepwise estimation.

We compared the traditional approaches, namely the one-step approaches and the stepwise ap-
proaches, with the two- and three-step approaches with the hereby proposed augmented first step,
that model the direct effects instead of ignoring them. All methods were compared to the one-
step approach including the direct effects, which, although being the statistically most efficient and
unbiased estimator, is in practice hardly ever used because of the complexities of model estimation.

The results of the simulation study show that ignoring the direct effects will lead to bias in
the estimated relationship between the LC variable and the covariate effects. Even more, the bias
is more severe with increasing magnitude and number of direct effects. Both stepwise corrected
approaches (modeling the direct effects) do better than the uncorrected approaches in all conditions,
and they have estimates similar to the ones obtained with the correctly specified one-step model.
The two-step approach follows the one-step corrected closer than the three-step in the one and two
direct effect conditions, however the differences are less then 1 % averaged over all conditions.
Furthermore it is also relevant to see that, among the incorrectly specified models, the three-step
approach has the least bias, so is the most robust to misspecifications. We also found that, with at
least two direct effects with magnitude of 0.25 and under conditions of moderate class separation
and/or small sample size, all estimators show larger sampling variability and SEs tend to be slightly
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underestimated. Although a SEs correction is available (Bakk et al., 2014; Di Mari et al., 2016),
given the already complex modeling involved and the almost perfect coverage rates found in all
simulation conditions, we suggest not using it.

The approach we propose for direct effect modeling in a latent Markov context are mostly data-
driven, in that they require refitting the model on the data at least twice and there is no theoretical
basis to specify the direct effects. Although this cannot be done carelessly, such an approach is
quite common in LC and, in general, SEM literature (see discussion of the topic in SEM context
by, for example, Bentler, 2007; Hooper et al., 2008). In addition, it should be noticed that, with
modeling the DE, the indicators are affected by the covariates twice. Directly, in the measurement
model, and indirectly, through the latent variable. Resorting to a stepwise approach might indeed
cause the effect in the later step be partially absorbed by the effect at the first step - see, for instance,
Asparouhov & Muthén (2014). Nonetheless, in light of the results of our simulation study, not
modeling the DE’s can have worse effects on the parameters of interest.

Next to bias, we looked at coverage and variance of the estimators as well. All corrected models
have approximately 95% coverage (given that the uncorrected models have biased estimates, look-
ing at the coverage is less relevant). Comparing the corrected stepwise approaches to each other
we can see that the augmented three-step approach has larger variability than the corrected two-step
approach. These findings can also be seen in the real data application, where, using the augmented
three-step approach, the same overall conclusion is reached as with the corrected one-step and two-
step, but point estimates are further away from the other approaches.

A practical advice would be to use the two-steps approach if the direct effects are of substantive
interest, whereas using the augmented three step is recommended when the direct effects are not
of interest - but just a source of bias. An extra argument in favor of the three-step approach is the
faster computation time (Bartolucci et al., 2015), which can make a difference for large datasets -
especially with many time points, indicators and covariates.

In the first step of the augmented three-step approach, as we have pointed out earlier, the number
of direct effects is likely to be misspecified. Considering that it is common, in applied research,
to have a rough knowledge on where the direct effects can be located, the augmented three-step
approach is likely to overspecify the direct effects, rather than underspecifying them. Whereby the
latter, based on what we found to be the consequences of not modeling direct effects, can be harmful
for parameter estimation, we found overspecification of the direct effects not to be an issue and to
be safely dealt with by the absorbing latent variable of the augmented 3-step approach.

An issue related to the use of the augmented three-step approach is the choice of the number of
classes for the absorbing latent variable. In principle, many states are more likely to approximate
the supposedly continuous distribution of the noise generated in the overparametrized first step.
This can results in issues of model identification and instability of the estimates. In our setups,
we have tried several choices of P , and we found P = 2 ∗ S to be enough to approximate the
noise distribution, still not being harmful to the model local identifiability. This heuristical solution
worked for both the simulation study and the empirical application. On the other hand, we found
that P ≤ S was not enough, therefore we suggest to pick values P > S. Although the P classes
do not need to be substantively interpretable, whether P can be selected together with S, using
information criteria (like BIC) based on the first step model, is indeed an interesting topic for future
research.

In this paper we chose to treat the direct effects as known using the one-step and two-step ap-
proaches for the simplicity of exposition. However, often in applied research the exact location of
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the DEs is not know and it needs to be investigated. While we shortly discussed the issue of us-
ing residual statistics such as the L-BVR to identify direct effects, including this in the simulation
study was outside the scope of this paper. As such we recommend for future research to investigate
how direct effects can be best identified in the context of latent Markov modeling. In the context
of simple LCA, the Expected Parameter Change (EPC) statistic and the BVR are successfully im-
plemented (D. L. Oberski et al., 2013), the BVR is implemented also in the context of multilevel
LCA (Nagelkerke et al., 2016). How they perform in the context of LM modeling is still to be
investigated. Using the three-step approach, these statistics can not be used, so the safest and most
lucrative option would be to have an overparametrized model, where also the resulting extra noise
is modeled, as we propose in this paper.

Using both the two- and three-step corrected approaches, the direct effects need to be modeled
in step one. It is still unknown the effect of adding covariates in the first step model on model
selection, an issue that should be addressed by future research.
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Appendix A
Latent GOLD syntax for the real data example for the two-step approach

Step one model including the direct effects

output parameters=first standarderrors bivariateresiduals;
variables
independent cohort, education;
dependent spkath, spkcom, spkhomo, spkmil, spkrac, SPKMSLM;
latent
Cluster nominal 3;
equations
Cluster← 1;
spkath← 1 + Cluster;
spkcom← 1 + Cluster;
spkhomo← 1 + Cluster+ cohort;
spkmil← 1 + Cluster;
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spkrac← 1 + Cluster+ education;
SPKMSLM← 1 + Cluster; { # In case the DE’s ares not modeled leave out the effect of cohort and

education on the indicators of interest };

Step two model

output parameters=first standarderrors ;
variables
caseid id;
dependent spkath, spkcom, spkhomo, spkmil, spkrac, SPKMSLM;
independent education, cohort;
latent State dynamic nominal 3;
equations
State[=0]← 1+education+ cohort ;
State← 1+ State[-1] +education+ cohort ;
spkath←(a)1 + (a1) State;
spkcom← (b)1 + (b1)State;
spkhomo← (c)1 + (c1)State+ (c2)cohort;
spkmil← (d)1 + (d1)State;
spkrac← (e)1 + (e1)State+ (e2)education;
SPKMSLM← (f)1 + (f1)State;
a a1 b b1 c c1 c2 d d1 e e1 e2 f f1=
{ # place here the fixed value parameters estimated in step one. };
{ # In case the DE’s ares not modeled leave out the effect of cohort and education on the indicators of

interest };

Appendix B
Latent GOLD syntax for the real data example for the three step approach

Step one & two model

output parameters=first standarderrors ;
outfile ’datastep3.sav’ classification keep id, TIME;
variables dependent spkath, spkcom, spkhomo, spkmil, spkrac, SPKMSLM;
independent education, cohort;
latent Cluster nominal 3, class nominal 6;
equations
Cluster← 1;
class← 1;
spkath← 1 + Cluster;
spkcom←1 + Cluster;
spkhomo← 1 + Cluster+ class+ education;
spkmil← 1 + Cluster;
spkrac← 1 + Cluster+class+cohort;
SPKMSLM← 1 + Cluster + class+cohort; { # In case the DE’s ares not modeled leave out the second

latent variable and the effect of cohort and education on the indicators of interest };

Step three model

step3 modal ml;
output parameters=first standarderrors=robust;
variables
caseid id;
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independent education, cohort;
latent Cluster dynamic nominal posterior = ( Cluster#1 Cluster#2 Cluster#3 );
equations
Cluster[=0]← 1+education+ cohort ;
Cluster← 1+ Cluster[-1] +education+ cohort ;

Appendix C
Detailed look on the SE and SD obtained with the different estimators in all the conditions for one selected parameter

Table A1
Simulation Results - Average estimated SE, SD for all six simulation conditions for β2Z1 . One Direct
Effect.

Sample Size 100 500 1000

SD SE SD SE SD SE
Moderate separation

FIMLcorr 0.591 0.571 0.243 0.248 0.165 0.175
FIMLuncorr 0.591 0.570 0.244 0.247 0.164 0.175
2STEPuncor 0.585 0.570 0.242 0.248 0.164 0.175
2STEPcorr 0.596 0.577 0.228 0.249 0.179 0.175
3STEP 0.611 0.603 0.256 0.258 0.167 0.182
3STEPaug 0.607 0.617 0.261 0.260 0.185 0.183

Large separation
FIMLcorr 0.515 0.533 0.240 0.234 0.158 0.165
FIMLuncorr 0.515 0.533 0.240 0.234 0.158 0.165
2STEPuncor 0.511 0.534 0.240 0.234 0.158 0.165
2STEPcorr 0.503 0.533 0.234 0.234 0.161 0.165
3STEP 0.523 0.548 0.244 0.238 0.162 0.168
3STEPaug 0.534 0.553 0.247 0.239 0.170 0.168
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Table A2
Simulation Results - Average estimated SE, SD for all six simulation conditions for β2Z1 . Two Direct
Effects.

Sample Size 100 500 1000

SD SE SD SE SD SE
Moderate separation

FIMLcorr 0.622 0.577 0.244 0.249 0.173 0.175
FIMLuncorr 0.616 0.575 0.245 0.249 0.172 0.175
2STEPuncor 0.604 0.577 0.245 0.249 0.173 0.175
2STEPcorr 0.608 0.579 0.244 0.249 0.173 0.175
3STEP 0.626 0.609 0.255 0.259 0.185 0.182
3STEPaug 0.620 0.615 0.258 0.264 0.193 0.186

Large separation
FIMLcorr 0.551 0.535 0.227 0.234 0.159 0.165
FIMLuncorr 0.55 0.535 0.227 0.234 0.159 0.165
2STEPuncor 0.543 0.537 0.227 0.234 0.158 0.165
2STEPcorr 0.544 0.537 0.226 0.234 0.159 0.165
3STEP 0.548 0.549 0.231 0.238 0.161 0.168
3STEPaug 0.555 0.554 0.236 0.241 0.162 0.170
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Table A3
Simulation Results - Average estimated SE, SD for all six simulation conditions for β2Z1 . Three
Direct Effects.

Sample Size 100 500 1000

SD SE SD SE SD SE
Moderate separation

FIMLcorr 0.559 0.575 0.244 0.249 0.168 0.176
FIMLuncorr 0.563 0.575 0.244 0.249 0.171 0.175
2STEPuncor 0.556 0.577 0.242 0.249 0.170 0.175
2STEPcorr 0.554 0.579 0.243 0.250 0.168 0.176
3STEP 0.587 0.609 0.248 0.260 0.18 0.183
3STEPaug 0.569 0.611 0.254 0.265 0.187 0.187

Large separation
FIMLcorr 0.546 0.535 0.247 0.234 0.163 0.165
FIMLuncorr 0.545 0.535 0.248 0.234 0.162 0.165
2STEPuncor 0.539 0.537 0.247 0.234 0.162 0.165
2STEPcorr 0.539 0.537 0.247 0.234 0.162 0.165
3STEP 0.544 0.550 0.249 0.239 0.165 0.168
3STEPaug 0.550 0.555 0.251 0.242 0.165 0.170
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